
Design method and algorithms for
directed self-assembly aware via
layout decomposition in sub-7 nm
circuits

Ioannis Karageorgos
Julien Ryckaert
Roel Gronheid
Maryann C. Tung
H.-S. Philip Wong
Evangelos Karageorgos
Kris Croes
Joost Bekaert
Geert Vandenberghe
Michele Stucchi
Wim Dehaene

Ioannis Karageorgos, Julien Ryckaert, Roel Gronheid, Maryann C. Tung, H.-S. Philip Wong,
Evangelos Karageorgos, Kris Croes, Joost Bekaert, Geert Vandenberghe, Michele Stucchi, Wim Dehaene,
“Design method and algorithms for directed self-assembly aware via layout decomposition in
sub-7 nm circuits,” J. Micro/Nanolith. MEMS MOEMS 15(4), 043506 (2016),
doi: 10.1117/1.JMM.15.4.043506.

Design method and algorithms for directed self-assembly
aware via layout decomposition in sub-7 nm circuits

Ioannis Karageorgos,a,b,* Julien Ryckaert,a Roel Gronheid,a Maryann C. Tung,c H.-S. Philip Wong,c

Evangelos Karageorgos,d Kris Croes,a Joost Bekaert,a Geert Vandenberghe,a Michele Stucchi,a and Wim Dehaenea,b
aimec, Kapeldreef 75, Leuven B-3001, Belgium
bKU Leuven, Department of Electrical Engineering (ESAT), Kasteelpark Arenberg 10, Leuven B-3001, Belgium
cStanford University, Department of Electrical Engineering, 420 Via Palou, Stanford, California 94305, United States
dUniversity of Athens, Department of Informatics and Telecommunications, Panepistimiopolis, Athens 15784, Greece

Abstract. Major advancements in the directed self-assembly (DSA) of block copolymers have shown the tech-
nique’s strong potential for via layer patterning in advanced technology nodes. Molecular scale pattern precision
along with low cost processing promotes DSA technology as a great candidate for complementing conventional
photolithography. Our studies show that decomposition of via layers with 193-nm immersion lithography in real-
istic circuits below the 7-nm node would require a prohibitive number of multiple patterning steps. The grouping
of vias through templated DSA can resolve local conflicts in high density areas, limiting the number of required
masks, and thus cutting a great deal of the associated costs. A design method for DSA via patterning in sub-7-nm
nodes is discussed. We present options to expand the list of usable DSA templates and we formulate cost
functions and algorithms for the optimal DSA-aware via layout decomposition. The proposed method works
a posteriori, after place-and-route, allowing for fast practical implementation. We tested this method on
a fully routed 32-bit processor designed for sub-7 nm technology nodes. Our results demonstrate a reduction
of up to four lithography masks when compared to conventional non-DSA-aware decomposition. © 2016 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.15.4.043506]

Keywords: directed self assembly; via patterning; design; cost function; grouping algorithms; alphabet.

Paper 16142P received Sep. 18, 2016; accepted for publication Oct. 13, 2016; published online Nov. 7, 2016.

1 Introduction
One of the main factors driving the growth of the semicon-
ductor industry is the ability to print ever smaller features
while keeping the cost at a minimum. In order to keep pace
with Gordon Moore’s famous semiconductor growth rate
forecast,1 lithographic process, the backbone of integrated
circuit fabrication has seen significant advancements.
However, as device dimensions keep shrinking, optical
lithography is now facing some serious challenges in sus-
taining the required cost-effectiveness and overlay accuracy.
As a consequence, the need for alternative lithography
solutions is greater than ever.

Directed self-assembly (DSA) of block copolymers
(BCPs) has emerged as a low-cost, high-throughput tech-
nique for extending the resolution of optical lithography.
Although BCPs are used in several applications, ranging
from automotive tires to drug delivery systems,2 it is only
recently that they have been extensively studied for use in
the semiconductor industry. BCPs are formed when two or
three monomers cluster together and form a chain of blocks.
When the BCP is confined by physical guiding templates,
its natural symmetry is altered and some aperiodic patterns
can be formed inside the templates. Controlling the shape
and position of the guiding templates, BCP materials self-
assemble to form densely packed features with uniform
dimensions and shapes, such as spheres, cylinders, or lamel-
lae, in ordered arrays at the scale of 3 to 50 nm.3–5 These

nanostructures are of great interest in very-large-scale inte-
gration (VLSI) design. DSA can be regarded as a connection
point between bottom-up self-assembly with top-down con-
ventional photolithography design.6,7

There are several processing approaches for the utilization
of self-assembled BCPs on nanolithography.8 For the via
application, one of the most straightforward approaches is
the graphoepitaxy flow using cylindrical phase BCP materi-
als and templated confinement.9,10 In graphoepitaxy, an
artificial topographic surface pattern is applied to control
the orientation of crystal growth in thin films.11,12 The
self-assembly of a BCP thin film is guided through the topo-
graphically patterned substrate, creating well-aligned struc-
tures of BCP microdomains.4 Using templated confinement,
small clusters of closely packed BCP holes can be positioned
accurately, allowing dense vias to be placed together on the
same mask. The grouping of vias in the high-conflict areas
allows the via layout to be printed with fewer multiple pat-
terning (MP) steps, effectively cutting down a great deal of
the associated costs, as well as limiting the performance
impact of MP due to variability.13,14

In recent years, there has been significant progress in per-
fecting graphoepitaxial DSA from a processing standpoint.
Collaborative efforts from academia and industry have
optimized the DSA process for 300 mm fab-compatible
implementation. Successive advancements in material
development, defect control, and pattern transfer accuracy
promoted DSA to a very promising approach for the pattern-
ing of vias in sub-7-nm technology nodes.8–10,15–19 However,

*Address all correspondence to: Ioannis Karageorgos, E-mail: ioannis.
karageorgos@imec.be 1932-5150/2016/$25.00 © 2016 SPIE

J. Micro/Nanolith. MEMS MOEMS 043506-1 Oct–Dec 2016 • Vol. 15(4)

J. Micro/Nanolith. MEMS MOEMS 15(4), 043506 (Oct–Dec 2016)

http://dx.doi.org/10.1117/1.JMM.15.4.043506
http://dx.doi.org/10.1117/1.JMM.15.4.043506
http://dx.doi.org/10.1117/1.JMM.15.4.043506
http://dx.doi.org/10.1117/1.JMM.15.4.043506
http://dx.doi.org/10.1117/1.JMM.15.4.043506
http://dx.doi.org/10.1117/1.JMM.15.4.043506
mailto:ioannis.karageorgos@imec.be
mailto:ioannis.karageorgos@imec.be
mailto:ioannis.karageorgos@imec.be
mailto:ioannis.karageorgos@imec.be

despite this great progress in the DSA process, a design
approach for DSA-aware via decomposition is still far
from practical implementation. Recent studies on the design
domain present some promising solutions for tackling the
problem of grouping “randomly” placed vias with finite
template shapes and propose algorithms to optimize the
grouping process.20–22 These solutions, however, require a
disruption in the electronic design automation (EDA) flow
in terms of either the development of new place-and-route
(PnR) tools or the adaptation of the current tools for a
whole new set of algorithms. Modern commercial PnR tools
have reached a certain maturity level and they are highly
optimized to work in a conventional, non-DSA-aware, style.
Such a change would require a sufficient amount of time
for the tools to mature enough so that the benefits of using
DSA would not be negated by the suboptimal PnR process.
DSA-aware routing solutions introduce an area penalty,
which also results in a power and performance penalty.
Furthermore, these studies are based on small theoretical
circuits, failing to provide an insight on the impact on large,
complex, more realistic circuits.

In this article, we propose a method for DSA-aware via
decomposition that minimizes the number of required masks
while also taking into account the constraints of the DSA
process. Rather than DSA-aware routing, in our method
we develop algorithms for the via grouping in the derived
layer after the PnR process. Similar to the alphabet
approach,21 we define a set of available DSA via templates,
or DSA letters, and we use these letters to group the vias and
decompose the layer. The set of DSA letters, or the DSA
alphabet, is defined based on the available process flows
and can be changed accordingly when new process options
become available. The alphabet is then further expanded
with the utilization of multiple BCPs combined with MP
(DSAþMP). For the via grouping optimization, we formu-
late a cost function that is based on process flow data and we
calibrate the coefficients with our in-house experimental
results.

Our method provides a solution a posteriori, in the sense
that it is applied after the PnR process. The main benefit of
such a solution is that it does not require a disruption in EDA
flow, thus it can be implemented rapidly. In order to demon-
strate that, we developed a parameterized tool that uses our
algorithms and performs full layout decomposition based
on the provided DSA alphabet, configuration, and target
lithographic options and parameters (e.g., ArF immersion,
EUV). We use our tool to perform via decompositions on
a fully routed ARM® Cortex®-M0 processor based on the
7-nm node, which we also scale down to various metal grid
geometries in the range between 7- and 3-nm nodes. Our
results demonstrate a reduction of up to four MP steps when
we test our method targeting ArF immersion lithography,
limiting the number of lithography masks to a maximum of
three even on the denser 3-nm node.

The rest of this article is organized as follows. In Sec. 2
the problem statement is outlined, where we present results
from our conventional via decomposition study on a fully
routed processor based on several sub-7-nm technology
nodes. Section 3 introduces some basic background on DSA
via patterning and describes the imec templated DSA flow
and process assumptions. In Sec. 4, our design method,
the algorithms, the cost function, and the block diagram of

our tool are presented. Section 5 introduces the results of our
method and concludes this article.

2 Problem Definition
As VLSI technology proceeds beyond the 45-nm node, ArF
immersion lithography, the workhorse of last decade’s opti-
cal lithography has reached its effective limit. In the absence
of a practical alternative,23 the best feasible solution appeared
to be the MP approach, where a dense circuit pattern can be
partitioned into multiple separate exposures. This has proved
a successful interim solution for several nodes, down to
10 nm. However, below the 10-nm node and as the number
of required MP steps increases, the associated cost and
variability penalty may render this solution prohibitive. Our
assumption is that the maximum number of MP steps per
metal layer should be limited to three, with an extreme maxi-
mum of four, in order for this option to remain cost effective.
In order to quantify the increase of MP steps in realistic cir-
cuits below the 10-nm node, we studied the MP via decom-
position of a fully routed ARM® Cortex®-M0 processor.
This 32-bit processor is designed for the 7-nm technology
node and is routed for three typical values of PnR utilization
factor: 70%, 80%, and 90%. We define the utilization factor
setting as the ratio of the die area to functional standard
cells, in percentage. In this sense, 100% utilization factor
would mean the highest possible density for the circuit,
where all the area is occupied only by functional cells, with-
out any dummy cells in-between (typically unrealistic). Then
we scale each design to various dimensions down to 3-nm
node, according to imec technology roadmap specifications,
and we perform MP via decomposition, or coloring, for the
most critical routing via layers. The coloring task is achieved
by a custom tool for graph partitioning based on state-of-the-
art coloring algorithms. The flowchart of this tool is illus-
trated in Fig. 1.

Initially, the tool generates the conflict graph from the
input via layer and design rule check (DRC) and produces
some graph statistics. Each via pair that violates DRC creates
a graph edge. Then the first level of graph partitioning is
performed and the maximal cliques are calculated using
the recursive backtracking Bron–Kerbosch algorithm.24 The
coloring is generated using the Halldórsson and Lau algo-
rithms,25 followed by simulated annealing26,27 in an iterative
improvement loop, based on the maximum clique size. This
iterative process starts with a chromatic number of one,
which increases incrementally until an acceptable solution
is found.

The results of our via coloring study for the first routing
metal layers (metal2 up to metal5) of our test processor are
shown in Fig. 2.

Start Parse file

End

DRC

GDSII via
layer file

Graph
algorithms

Cliques
s

Coloring
results

Statistics

Conflict
Graph

Fig. 1 Flowchart of the imec tool for via layer coloring.

J. Micro/Nanolith. MEMS MOEMS 043506-2 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

The y-axis in each of the graphs of Fig. 2 shows the mini-
mum number of colors (chromatic number) required to print
the specific via layer. The column groups in the x-axis re-
present the different unidirectional metal grid geometries
of our designs, which are based on the specifications of
imec technology nodes in the range of 7 to 3 nm, and the
different column shades represent the three PnR utilization
factor settings used for the routing. Our results indicate
that for the critical routing layers of a realistic circuit in
sub-7-nm nodes, a minimum number of up to seven MP
steps are required in order to print the vias, assuming ArF
immersion lithography. This number is far above the maxi-
mum number of three MP steps per via layer we specified
earlier. Even with the use of EUV lithography, a double
patterning is required beyond the 26 nm × 26 nm metal
grid, since the minimum distance of diagonal vias is larger
than the EUV resolution.28,29 This increases the cost of an
already expensive technology.

3 imec Templated Directed Self-Assembly Flow

3.1 Process Description

The imec templated DSA flow for vias has been described in
detail in the past.9,10,16,17 Since the process itself is not the
main focus of this article, it will be discussed in brief and
emphasis will be given only in the relevant design aspects.
The imec DSA flow for vias is based on graphoepitaxy with

cylindrical phase BCP materials. The schematic representa-
tion of this flow is shown in Fig. 3.

Starting with an Si or Si3N4 substrate, a typical trilayer
stack consisting of 100 nm spin-on carbon, 30 nm spin-
on glass, and 85 nm of negative tone development photore-
sist for ArF immersion are deposited on top using the
Sokudo DUO coat and development system. The coating
and development of the trilayer stack is done using the ven-
dor’s recommended settings for postapply bake, postexpo-
sure bake, and development. The prepattern templates are
then patterned on the resist with an ASML NXT:1950i scan-
ner and ArF immersion exposure. The exposure settings that
are used include 1.2NA using annular illumination with
so ¼ 0.8, si ¼ 0.6, and XY-polarization. Next, the templates
are etched into the SoC/SoG stack and all resist material is
removed.

At this stage, the template is, in principle, ready for BCP
application. However, a process choice may be to strip the
SoG layer by means of diluted HF and/or apply a brush layer
to the template. As a final processing step, the BCP is being
coated, typically resulting in partially conformal coating of
the template topography. Annealing of the BCP results in
phase separation of the blocks and thus the desired cylindri-
cal hole patterns are formed. The cylindrical phase separation
results in polymethyl methacrylate (PMMA) cylinders
within the PS-block. Then a wet development process is used
for the removal of these PMMA cores, leading to open DSA

via23 (metal2 -metal3)

0

1

2

3

4

5

6

7

8

32x32 30x30 28x28 26x26 24x24

via34 (metal3 -metal4)

32x32 30x30 28x28 26x26 24x24

Grid geometry (nm)

via45 (metal4 -metal5)

32x32 30x30 28x28 26x26 24x24

70

80

90

P
n

R
u

ti
liz

at
io

n
 f

ac
to

r
(%

))c2c
mn001(sroloc fo #

(a) (b) (c)

Fig. 2 ARM® Cortex®-M0 via coloring results. (a–c) represent a different via layer. For each layer, the
minimum number of required colors is plotted on the y axis, across various metal grid geometries, which
are shown as different column groups in the x axis, and for three different PnR utilization factor settings,
illustrated with a different shade of cyan/blue.

Litho Dry etch

Coat BCP
and anneal
Coat
and a

Remove PMMA

85 nm NTD resist
30 nm Spin-on-Glass
75/100 nm Spin-on-Carbon
Si3N4

Pattern transfer
into Si3N 4

SOG strip

Coat brush,
anneal, rinse

DSA holes

Guiding pre-pattern
templates

Fig. 3 Schematic overview of the imec templated DSA process flow.

J. Micro/Nanolith. MEMS MOEMS 043506-3 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

holes. In our current process, we are testing two BCP mate-
rials with center-to-center natural pitches (L0) of 37 and
48 nm, respectively.

3.2 Pattern Restrictions

When the shape and dimensions of the templates are com-
mensurate with the BCP natural pitch, various configurations
of DSA holes can be obtained within the template. Some
typical examples of these configurations are shown in the
scanning electron microscope (SEM) images of Fig. 4.

Our experimental results indicate that the larger templates
lead to increasing variation in the CD, form, and placement
of the DSA cylinder.30 In addition, for more complex
two-dimensional template shapes, like the ones shown in
Figs. 4(e) and 4(f), variations in lithography (e.g., at corners)
add further instability in the DSA formation. Therefore,
starting from the capabilities of the templated DSA process
in our hands, we currently restrict the pattern types consid-
ered for practical implementation of DSA to “singlets,”
“doublets,” and at most “linear triplets” (referred to as just
“triplets” for the rest of this article).

4 Design Method
In order to tackle the via decomposition problem, as
described in Sec. 2, we introduce a method that combines
193i, MP, and templated DSA to drastically reduce the cost
per via layer, which can be applied post-PnR, allowing fast
practical implementation. The proposed method can be seen,
on one hand, as an alternative to the much anticipated EUV
lithography, but on the other hand, it can be also seen
as a booster for EUV in the future, since it could reduce
the number of masks when MP will eventually be required
for EUV as well.

4.1 Combine Block Copolymer Materials

One of the challenges for the practical application of tem-
plated DSA is the lack of flexibility in the attainable distance
between the cylindrical hole patterns, or the hole pitch, with
respect to the pitch variation in the actual vias of a circuit.

The pitch of the target vias has to be commensurate with the
L0 of the BCP. The pitch of the derived DSA holes can only
vary slightly with the “stretching” or “compression” of the
template.31 As a result, there is a limited number of templated
DSA letters that can be matched with the via patterns after
the PnR.

In order to address this limitation and increase the number
of available DSA letters, we suggest the use of multiple BCP
materials in an MP flow. Taking advantage of the different
process flow for each MP step, we could also utilize a differ-
ent DSA flow that uses another BCP material. We assume
that with the proper process optimization, any variability
effect induced by the alternation of DSA process flows
can be adequately limited. Combining BCP materials of dif-
ferent L0 would increase the effective DSA hole pitch range,
resulting in more DSA letters available for via grouping. As
seen in the illustration of Fig. 5, one specific BCP material
might successfully form holes in a diagonal via arrangement
with a distance of �1, �1ðx; yÞ grid points [Fig. 5(a)], but
fail for the vertical arrangement with a distance of 0, �2 grid
points [Fig. 5(b)]. Another BCP material could work for the
0, �2 grid points via arrangement [Fig. 5(d)], but fail for the
diagonal vias [Fig. 5(c)]. Then a combination of both BCPs,
in an MP flow, allows both via arrangements to be grouped
by a DSA letter [Fig. 5(e)].

The careful choice of BCP materials, which should be
based on the target technology dimensions, can greatly
increase the DSA grouping flexibility.

4.2 Templated Directed Self-Assembly Alphabets

After specifying the BCP materials in use and the process
flows, the next step is the definition of the feasible DSA let-
ters that are available for via grouping. Our DSA alphabets
are derived from experimental data based on a set of rules
and a couple of assumptions. One of our assumptions is
that the metals for the interconnects are unidirectional and
are always placed on a grid. As a consequence, a fixed
grid is created for the via placement and in that sense any
pair of vias can be separated on the x or y axis by a distance

Fig. 4 SEM images of DSA hole formation for various template shapes. (a) The single-hole template
which has the largest process window in our experimental data. (b) and (c) Double-hole and triple-
hole one-dimensional templates with acceptable process windows. The larger one-dimensional tem-
plates, as in (d), as well as the complex two-dimensional templates in (e) and (f), show a negligible
or nonexistent process window in our experiments.

J. Micro/Nanolith. MEMS MOEMS 043506-4 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

that is always a multiple of the grid pitch. Due to the unidir-
ectionality of metals and the minimum clearance distance
(metal end-to-end) that is needed in lithography, a design
rule forbids the placement of two vias adjacent (on the imme-
diate next grid point) on the x or y axis. The router makes
sure that no connection can be put there. Instead, it will try to
make the connection further away, at least two grid points
apart (�2, 0 or 0, �2 for x, y). However, a pair of vias
can be adjacent in the diagonal direction, which is �1,
�1ðx; yÞ grid points away, since this does not create any
violation. Thus, in a densely packed group of vias, the via
arrangement tends to resemble a checkerboard type of
pattern where the minimum feature distance is the distance

of the diagonally adjacent vias (
ffi
grid2x þ grid2y

q
). Another

assumption is that although our experimental results involve
only horizontal or vertical templates for “doublets” and “trip-
lets”, we assume that templates of any orientation on the
layer can be achieved.

Taking into account the above rules and restrictions, we
define a library of DSA alphabets, each one coupled with a
specific technology. In this study, two BCP materials are
considered, one with an L0 of 37 nm and one with an L0

of 48 nm. A schematic representation of our DSA alphabets
across various metal grid geometries is shown in Fig. 6.

In Fig. 6 we show a set of feasible DSA letters, with each
color representing one of the BCP materials in use. These
letters are derived from the commensuration of the possible
via arrangements on a specific grid, with the pitch range of
each BCP material, as shown in the top left section of the
figure. The latter represents the stretching/compression range
of the template around the natural pitch of the material while
still having a successful hole formation.

For better visibility we show the letters in only one ori-
entation, although they can have any orientation on the grid
(e.g., 90 deg rotated, mirrored on one axis). Additionally,
wherever we show a “triplet,” it is implied that a “doublet”
of the same form is also available. However, this does not
apply vice versa. The reason is that in our process the “trip-
let” has a narrower process window than the “doublet,”
which translates to a narrower hole pitch range. In this
regard, if a “triplet” of a specific pitch value is achievable,
then an equivalent “doublet” is certainly also achievable;
however, the opposite may not apply.

For each alphabet, we set n classes of letters, where n is
the number of available BCP materials; in our case, two

BCP1

BCP2

BCP1 + BCP2(a) (b)

(c) (d)

(e)

Fig. 5 Schematic illustration of the expansion of available DSA letters when combining BCP materials of
different L0. (a) Accurate hole formation with BCP1 when grouping diagonal vias (via pitch very close to
L0). (b) Inaccurate hole formation with BCP1 when grouping vias in horizontal/vertical arrangement (via
pitch much larger than L0). (c) Inaccurate hole formation with BCP2 when grouping diagonal vias (via
pitch much smaller than L0). (d) Accurate hole formation with BCP2 when grouping vias in horizontal/
vertical arrangement (via pitch very close to L0). (e) A combination of the two materials, in different
process steps, allows accurate hole formation when grouping both via arrangements.

24
24

26
26

28
28

30
30

32
32

grid (nm)

22
28

gg

288

(

22

* ‘‘triplets’’ incorporate
also the ‘‘doublets’’

BCP1_37nm
doublet 33-50nm
triplet 35-45nm

range:

BCP2_48nm
doublet 42-60nm
triplet 44-56nm

range:

Fig. 6 Overview of our DSA alphabets definition for various technology nodes (metal grid pitch) using two
BCP materials (top left region of the figure).

J. Micro/Nanolith. MEMS MOEMS 043506-5 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

classes: class A and class B. Then we set seven different
subclasses of letters: (a) the “singlet,” (b) the “rectilinear
doublet” (always aligned with the x or y axis), (c) the “recti-
linear triplet,” (d) the “diagonal doublet” (vias separated by
�1, �1 grid points), (e) the “diagonal triplet,” (f) the
“skewed doublet” (vias separated by �2, �1 or �1, �2
grid points), and (g) the “skewed triplet.” Each subclass
(except for the “singlet”) includes all the different versions
of the relevant letter in any orientation, with each variant
assigned a different ID.

With the classification in place, we compose our alphabet
configurations, which are basically all the combinations of
the basic classes for the relevant range of colors (MP
steps) we target. For example, for one color (single pattern-
ing) there are two alphabet configurations: A and B. This
means that either one of the two BCP materials is going
to be used and we can test both to see which one will
be more suitable. For two colors, the possible alphabet
configurations are AA, AB, and BB (BA ¼ AB). The AA con-
figuration means that only the first material will be used for
both patterning steps, ABmeans that both BCP materials can
be used, one for each of the patterning steps, and BB means
that only the second BCP material will be used for both pat-
terning steps. For three colors, the alphabet configurations
are AAA, AAB, ABB, and BBB. The following general
equation is derived for the calculation of the number of
alphabet configurations with n number of classes and r num-
ber of colors

EQ-TARGET;temp:intralink-;e001;63;275

�
n
r

�
¼ ðnþ r − 1Þ!

r!ðn − 1Þ! :

In the present study, for n ¼ 2, the number of configura-
tions is rþ 1.

4.3 Layout Split

Graph partitioning and coloring has been shown to be an
NP-hard problem32–34 (unless P ¼ NP). In a large realistic
circuit with tens or hundreds of thousands of vias, it would
be nearly impossible to find a good solution in finite time.
As a first optimization step, we propose the split of the
layout into smaller noncolor-conflicting via clusters. All vias
that belong to the same cluster are separated from any other
via by a distance that is larger than the lithography resolu-
tion; in our experiments we assume a minimum distance of
100 nm for immersion lithography resolution. This way,
the via layer is divided into small via clusters that can be
colored separately since whatever coloring scheme is used
in one cluster does not have an impact on the coloring
scheme of any other. Likewise, from the graph point of view,
the clustering task is a type of unbalanced graph partitioning
into components (vertex, edge, or set of edges) of minimum
size, with zero edges running between each component.
A schematic illustration of this process is shown in Fig. 7.

Computation of the graph components can be done in lin-
ear time, thus optimizing a lot the grouping and coloring
processes since the number of vertices can be significantly
reduced; these components can be grouped and colored
separately, one at a time.

4.4 Grouping and Coloring

4.4.1 Cost function

In order to group the vias in a way that can be matched with
a DSA letter, we have to somehow “scan” each cluster with
the letter pattern and identify the possible matches. Each
cluster’s via pattern, however, can be matched in multiple
ways with various combinations of letters. An example of
different grouping solutions is shown in Fig. 8.

Fig. 7 Schematic illustration of the layout split into noncolor-conflicting via clusters.

OR OR

Fig. 8 Illustration of different grouping solutions applied to a via cluster.

J. Micro/Nanolith. MEMS MOEMS 043506-6 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

In order to qualify each of the possible grouping combi-
nations and optimize the solution, we formulate a cost func-
tion. An initial cost value is assigned to each letter, which is
derived from experimental data and is related mainly to the
process window for the successful creation of the target holes
after PMMA removal. Starting with a reference cost of one
unit for the “singlet,” it is up to the process engineers to
estimate the cost values for the rest of the letters, based on
their experimental results. In this study, we start with the
assumption of a linear relation among the three basic catego-
ries of our letters: the “singlet,” the “doublet,” and the “trip-
let.”We assign a cost of two units for the “doublet” and three
units for the “triplet.” We also assume an equal cost for all
versions of “doublets” and “triplets,” which are the letters in
all the different orientations. Our experimental data so far
include only rectilinear templates for the long letters, thus
we cannot have a safe estimation of the cost variations in
different orientations, if they do exist.

The total cost of each grouping solution can be estimated
as the sum of two components: (a) the cost of all the indi-
vidual letters used for this grouping and (b) the number of
required colors. The following cost function is formulated
for the estimation of any grouping cost cg:

EQ-TARGET;temp:intralink-;e002;63;224cg ¼ k1 ×
X
l∈g

cl þ k2 × r;

where cl denotes the letter cost for each letter l multiplied by
the number of vias of that letter [cl ¼ ðletter cost unitsÞ ×
ðnumber of viasÞ], r denotes the number of colors used in
each grouping g and k1, k2 are weight constants specifying
the relative importance between the letter cost summation,
which translates to process optimization, and the target
number of colors.

An example of the total grouping cost values for different
grouping solutions applied to the via cluster of Fig. 8 is
shown in the illustration of Fig. 9. The grouping solution
in Fig. 9(a) uses four colors and the solution in Fig. 9(b)

uses three colors. Assuming a cost of one unit for the
“singlet”: cl1 ¼ 1 and four units for the “doublet”
(two units per via × 2 vias): cl2 ¼ 4, if we set k1 ¼ k2,
then the optimal grouping is the one of Fig. 9(a), since it
has the lowest grouping cost value → Fig. 9(c):
cgðaÞ < cgðbÞ. However, if we increase the weight of k2 by
10 times the weight of k1, which means that we are con-
cerned more about the number of colors rather than the proc-
ess window, then the grouping of Fig. 9(b) is the most
favorable one → Fig. 9(d): cgðaÞ > cgðbÞ.

4.4.2 Grouping and coloring algorithms

In order to find an appropriate grouping solution, which will
be referred to as solving the cluster, we have developed a
process that takes the set of all possible letter matches as
an input and yields a specific subset of them that covers
most, if not all, vias of the cluster only once and has a min-
imal aggregate cost. The matches have an inherent connec-
tivity based on the color of their letter and their position.
Two matches are overlapping if at least one via is covered
by both of them. Two matches are neighbors if the distance
between them is below the conflict threshold. Two matches
are conflicting if they are neighbors and have the same color.
Otherwise, they are nonconflicting. Two matches are non-
conflicting neighbors if they are neighbors, nonconflicting,
and not overlapping. In order to solve the cluster, we propose
two different algorithmic approaches based on two different
data organizational structures. In the solution tree approach,
we model all possible match sets as nodes on a tree. Any
match set is defined as a tree node. Every tree node can
generate a child node by removing a match from its set.
This means that any tree node that contains n matches
will have n children, each of which will have n − 1 matches.
The total number of descendants (d) of a node will be
dðnÞ ¼ n × ½dðn − 1Þ þ 1�, with dð1Þ ¼ 0, or alternatively
dðnÞ ¼ bðe − 1Þ × n!c − 1.35 The cost of a tree node is the
aggregate cost of all the matches in its set. A root tree

(a) (b)

(c)

(d)

Fig. 9 Examples of grouping cost values for different grouping solutions, (a) and (b), and their respective
grouping cost values when (c): k1 ¼ k2 and (d): k2 ¼ 10k1. The letter cost of the “singlet” (cl1) is
assumed to be one unit (one unit per via) and the cost of the “doublet” is four units (two units per via).

J. Micro/Nanolith. MEMS MOEMS 043506-7 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

node along with all its descendants defines a solution tree.
Also, a node that fails to cover all the vias of the cluster
is invalid and its children can be pruned from the tree. A
tree node whose matches are nonconflicting and cover all
the vias of the cluster only once is a solution node, while
the solution node that has the lowest cost is the optimal
solution node.

Another algorithmic approach models all the matches as
a graph, called the match graph. The nodes of this graph
are the matches themselves, while any two matches that
are neighbors are connected by an edge. By traversing the
graph and selecting matches that are nonconflicting with
each other, we can yield a solution set.

Using the solution tree and match graph algorithmic
approaches, we define three different algorithms that attempt
to solve a cluster. These algorithms can be combined to cre-
ate a process that solves any cluster efficiently with a high
success rate and a minimal cost.

a. The tree solving algorithm traverses the solution tree
to find a solution node with minimal cost. Performing
breadth-first search (BFS) on the solution tree, all the
solution nodes can be exhaustively found along with
the optimal solution node and, subsequently, the opti-
mal grouping solution. This is an exhaustive search
over the solution tree and will always find the optimal
solution. It only fails to find a solution if there is
none, and in this case, it finds the best possible fit.
The combinatorial complexity, combined with a large
search space, makes this algorithm practical only for
clusters with a small number of vias. Alternatively, a
heuristic depth-first search can be performed on the
tree, stopping on the first available solution node.
This can yield a solution significantly quicker, but
the solution can be suboptimal.

b. The path solving algorithm traverses the match graph,
creating a variant of a simple path whose matches are
nonconflicting and cover most, if not all, of the vias in
the cluster. In each step, there is a transition from a
match to one of its nonconflicting neighbors. The
selected neighbor must not conflict with any of the
matches already in the path. The path depends on
the specific neighbor chosen from a node’s transition
to another. If it fails to cover all the vias in the cluster,
it recursively backtracks to choose different neigh-
bors of previous matches, resulting in a different
path. The graph traversal itself is performed in linear
time; however, the involvement of recursive back-
tracking implicates that unless a viable solution is
quickly found, the search has combinatorial complex-
ity. Although this algorithm can have nonpolynomial
complexity, the search space is significantly smaller
than the search space of the solution tree. Most
clusters that consist of less than ∼10 vias are solved
with hardly any backtracks, almost instantaneously.
The algorithm quickly converges to a solution,
since the first path that is found covers almost all
vias of the cluster. This approach is similar to the
way humans intuitively try to solve the same prob-
lem; start from a match and try to add valid adjacent
matches until the entire cluster is solved, while when

a dead-end is encountered, undo some steps and try
a slightly different path.

c. The generational solving algorithm traverses the
match graph using a variant of graph growing. A gen-
eration is a set of nonconflicting matches. It has its
own search front, consisting of all the neighboring
matches at the boundary of the covered area. A gen-
eration can spawn a new generation by choosing
matches from its search front to expand the match
set. Successive generations will be spawned, until
either no more matches can be included, or the last
generation’s match set covers all the vias of the clus-
ter. The matches that are added to a generation’s set
during spawning depend on the ordering of the
matches in the search front. If the algorithm fails
to result in a generation that covers all the vias, it
recursively backtracks and changes the ordering of
the matches in previous generations’ search fronts,
resulting in different sets of matches for the next gen-
erations. The generational solving algorithm is the
most scalable approach, yielding a solution for a clus-
ter of 100þ vias in less than a second on commodity
hardware. One of the side effects of this algorithm is
that it cannot be exhaustive, since the differentiation
of results is based on the order of the matches in the
cluster, which is arbitrary.

The three algorithms are utilized in a number of succes-
sive steps in order to solve a particular cluster. Every step
performs a faster algorithm than the previous one, but is
expected to find a less optimal solution. If any of the
steps yield a solution, no more steps will be attempted.
The steps are as follows:

1. If the cluster is small enough, execute the tree solving
algorithm with a time limit.

2. Try to find a solution using the path solving algorithm,
configured to search for a low solution cost.

3. Try to find a solution using the path solving algorithm,
configured to perform aggressive optimization and
search for a low solution cost.

4. Try to find a solution using the path solving algorithm,
configured to perform aggressive optimization and
search for best fit.

5. Try to find a solution using the generational solving
algorithm.

6. Randomize the order of the matches in the cluster and
try to find a solution using the generational solving
algorithm.

7. Repeat last step N times, where N is given in
configuration.

If a solution is not found after all the steps, the process
returns the set which covers the most vias, while having the
lowest cost.

4.4.3 Directed self-assembly aware via
decomposition tool

Putting everything together, we developed a tool for the
optimal DSA-friendly decomposition of a via layer based

J. Micro/Nanolith. MEMS MOEMS 043506-8 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

on provided alphabets and configurations. The basic flow-
chart of our tool is shown in Fig. 10.

The tool inputs are the circuit layout file in GDSII format,
the target via layer name, an alphabet file, and a configura-
tion file. Initially the tool parses the GDSII file and extracts
the polygons of the target via layer saving them in bBox for-
mat. Then the polygons are converted to single points with
coordinates of the center of mass of each polygon. The actual
via polygon is not relevant at this point, only their relative
positions are important. After that, the tool performs the
via clustering task using a BFS algorithm for connected com-
ponents, optimized with space partitioning. The results are
saved on disk as separate files. The clusters that are bigger
than one-via enter the basic tool flow one by one where they
are first rasterized (converted to matrices) and then they are
processed using our grouping and coloring algorithms, as
described in Sec. 4.4.2. The best solutions are saved on
disk along with the total cost. The clusters are assembled
back again, they are converted back to polygons and then
converted and saved back to the individual GDSII files,
one for each mask.

5 Results and Discussion
We used our tool to run a decomposition study for all ver-
sions of our benchmark ARM® Cortex®-M0 processor, as
described in Sec. 2. The results of this study are presented
in the comparative column bar chart of Fig. 11, overlaid to

the non-DSA decomposition results of Fig. 2. The solid
orange bars represent the minimum number of colors in
each decomposition, when the remaining conflicts are less
than 0.1% of the total number of vias. In these cases either
there is no conflict at all or there are only a few conflicts here
and there which we assume they can be easily resolved by
a manual change of the layout. The orange bars which are
complemented with a dashed bar indicate that for the
solid part of the bar the remaining conflicts are limited
between 0.1% and 0.5% of the total number of vias and
an extra color (dashed bar) may be needed. For this range
of number of conflicts, we assume that a manual resolve
may be applicable for small to medium circuits; however,
it might not be manageable for large circuits. After that
level (≥ 0.5%) we assume that a manual resolve is no longer
possible, or at least worthwhile.

These results indicate that a reduction of up to four MP
steps can be achieved in a realistic circuit below the 7-nm
node, using the described method along with the considered
DSA flow and materials. Even on the denser metal grid
geometry of 24 nm × 24 nm pitch, the number of MP
steps is limited to a maximum of three in most of the
cases. Moreover, this reduction of MP steps can be achieved
after the PnR process, leaving the EDA flow intact, and thus
allowing for fast adoption. The utilization of more BCP
materials, which translates to the expansion of alphabets, can
further increase the efficiency of this method.

0

1

2

3

4

5

6

7

8

32x32 30x30 28x28 26x26 24x24

70

80

90

0

1

2

3

4

5

6

7

8

32x32 30x30 28x28 26x26 24x24

Grid geometry (nm)

70

80

90

0

1

2

3

4

5

6

7

8

32x32 30x30 28x28 26x26 24x24

70

80

90

P
n

R
u

ti
liz

at
io

n
 f

ac
to

r
(%

))c2c
mn001(sroloc fo #

via23 (metal2 -metal3) via34 (metal3 -metal4) via45 (metal4 -metal5)

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A D
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

AD
S

A
D

S
A

D
S

AD
S

A
D

S
A

D
S

A

D
S

A
D

S
A

D
S

A

#conflicts < 0.1%

0.1% #conflicts < 0.5%

(a) (b) (c)

Fig. 11 DSA via decomposition results. Comparative column bar chart overlaid (orange columns) to the
bar chart results of Fig. 2 (cyan/blue shaded columns).

Fig. 10 Flowchart of our DSA-aware via layout decomposition tool.

J. Micro/Nanolith. MEMS MOEMS 043506-9 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

Acknowledgments
This work was supported in part by the National Science
Foundation (award number 1421292). MCT is additionally
supported by a PhD Fellowship of the National Science
Foundation.

References

1. G. E. Moore, “Progress in digital integrated electronics,” in Int. Electron
Devices Meeting (IEDM ‘75) Technical Digest, Vol. 21, pp. 11–13
(1975).

2. H. Yoshida and M. Takenaka, “1—Physics of block copolymers
from bulk to thin films,” in Directed Self-Assembly of Block Co-
Polymers for Nano-Manufacturing, R. Gronheid and P. Nealey, Eds.,
Woodhead Publishing Series in Electronic and Optical Materials,
pp. 3–26, Woodhead Publishing, Sawston, Cambridge (2015).

3. I. Hamley, The Physics of Block Copolymers, Oxford Science publica-
tions, Oxford University Press, Oxford (1998).

4. C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self
assembled block copolymer patterns,” Polymer 44(22), 6725–6760
(2003).

5. M. P. Stoykovich et al., “Directed self-assembly of block copolymers
for nanolithography: fabrication of isolated features and essential inte-
grated circuit geometries,” ACS Nano 1(3), 168–175 (2007).

6. S. O. Kim et al., “Epitaxial self-assembly of block copolymers on
lithographically defined nanopatterned substrates,” Nature 424(6947),
411–414 (2003).

7. C. T. Black et al., “Polymer self assembly in semiconductor microelec-
tronics,” IBM J. Res. Dev. 51, 605–633 (2007).

8. J. K. Kim et al., “Functional nanomaterials based on block copolymer
self-assembly,” Prog. Polym. Sci. 35(11), 1325–1349 (2010).

9. J. Bekaert et al., “Contact hole multiplication using grapho-epitaxy
directed self-assembly: process choices, template optimization, and
placement accuracy,” Proc. SPIE 9231, 92310R (2014).

10. R. Gronheid et al., “Process optimization of templated DSA flows,”
Proc. SPIE 9051, 90510I (2014).

11. H. I. Smith and D. C. Flanders, “Oriented crystal growth on amorphous
substrates using artificial surface-relief gratings,” Appl. Phys. Lett.
32(6), 349–350 (1978).

12. H. I. Smith et al., “Silicon-on-insulator by graphoepitaxy and zone-
melting recrystallization of patterned films,” J. Cryst. Growth 63(3),
527–546 (1983).

13. K. Jeong, A. B. Kahng, and R. O. Topaloglu, “Assessing chip-level
impact of double patterning lithography,” in 11th Int. Symp. on
Quality Electronic Design (ISQED ‘10), pp. 122–130 (2010).

14. I. Karageorgos et al., “Impact of interconnect multiple-patterning vari-
ability on SRAMs,” in Design, Automation Test in Europe Conf.
Exhibition (DATE ‘15), pp. 609–612 (2015).

15. S.-J. Jeong et al., “Directed self-assembly of block copolymers for next
generation nanolithography,” Mater. Today 16(12), 468–476 (2013).

16. R. Gronheid et al., “Implementation of templated DSA for via layer
patterning at the 7 nm node,” Proc. SPIE 9423, 942305 (2015).

17. J. Doise et al., “Implementation of surface energy modification in graph-
oepitaxy directed self-assembly for hole multiplication,” J. Vac. Sci.
Technol. B 33(6), 06F301 (2015).

18. J. Doise et al., “Influence of template fill in graphoepitaxy DSA,” Proc.
SPIE 9779, 97791G (2016).

19. R. Gronheid et al., “EUV patterned templates with grapho-epitaxy DSA
at the N5/N7 logic nodes,” Proc. SPIE 9776, 97761W (2016).

20. H. Yi et al., “Contact-hole patterning for random logic circuits using
block copolymer directed self-assembly,” Proc. SPIE 8323, 83230W
(2012).

21. Y. Du et al., “Block copolymer directed self-assembly (DSA) aware
contact layer optimization for 10 nm 1d standard cell library,” in
IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD ‘13),
pp. 186–193 (2013).

22. Y. Du et al., “DSA-aware detailed routing for via layer optimization,”
Proc. SPIE 9049, 90492J (2014).

23. R. S. Ghaida and P. Gupta, “Role of design in multiple patterning:
technology development, design enablement and process control,” in
Design, Automation Test in Europe Conf. Exhibition (DATE ‘13),
pp. 314–319 (2013).

24. C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Commun. ACM 16, 575–577 (1973).

25. M. M. Halldrsson and H. Lau, “Low-degree graph partitioning via
local search with applications to constraint satisfaction, max cut, and
coloring,” J. Graph Algorithms Appl. 1(3), 1–13 (1997).

26. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science 220(4598), 671–680 (1983).

27. V. Černý, “Thermodynamical approach to the traveling salesman prob-
lem: an efficient simulation algorithm,” J. Optim. Theory Appl. 45(1),
41–51 (1985).

28. A. Yen, “Advanced lithography,” in IEDM Short Course: Emerging
CMOS Technology at 5 nm and Beyond, p. 23 (2015).

29. C. Lin et al., “Feasibility study of grapho-epitaxy DSA for comple-
menting EUV lithography beyond N10,” in 1st Int. Symp. on DSA
(2015).

30. G. Fenger et al., “Calibration and application of a DSA compact model
for graphoepitaxy hole processes using contour-based metrology,” Proc.
SPIE 9235, 92351X (2014).

31. S. M. Nicaise, K. A. Tavakkoli, and K. K. Berggren, “8—self-assembly
of block copolymers by graphoepitaxy,” in Directed Self-Assembly of
Block Co-Polymers for Nano-Manufacturing, R. Gronheid and P.
Nealey, Eds., Woodhead Publishing Series in Electronic and Optical
Materials, pp. 199–232, Woodhead Publishing, Sawston, Cambridge
(2015).

32. K. Andreev and H. Räcke, “Balanced graph partitioning,” in Proc. of the
Sixteenth Annual ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA ’04), pp. 120–124, ACM, New York, NY (2004).

33. A. E. Feldmann and L. Foschini, “Balanced partitions of trees and
applications,” Algorithmica 71(2), 354–376 (2015).

34. A. Buluç et al., “Recent advances in graph partitioning,” CoRR, http://
arxiv.org/abs/1311.3144 (2013).

35. D. E. Knuth, The Art of Computer Programming. Combinatorial
Algorithms, Part 1, Vol. 4A, Addison-Wesley Professional, Boston
(2011).

Ioannis Karageorgos is a PhD student at imec, Belgium, affiliated
with the Electrical Engineering Department of University of Leuven.
He received his BS degree in electrical engineering from ASPETE,
Athens in 2008 and his MS degree in microelectronics from the
University of Athens in 2012. His current research interests include
circuit design methods, computer science, and electronic design
automation. He is a member of SPIE.

Biographies for the other authors are not available.

J. Micro/Nanolith. MEMS MOEMS 043506-10 Oct–Dec 2016 • Vol. 15(4)

Karageorgos et al.: Design method and algorithms for directed self-assembly aware via layout decomposition. . .

http://dx.doi.org/10.1109/IEDM.2012.6479138
http://dx.doi.org/10.1109/IEDM.2012.6479138
http://dx.doi.org/10.1016/B978-0-08-100250-6.00001-8
http://dx.doi.org/10.1016/B978-0-08-100250-6.00001-8
http://dx.doi.org/10.1016/j.polymer.2003.08.011
http://dx.doi.org/10.1021/nn700164p
http://dx.doi.org/10.1038/nature01775
http://dx.doi.org/10.1147/rd.515.0605
http://dx.doi.org/10.1016/j.progpolymsci.2010.06.002
http://dx.doi.org/10.1117/12.2066647
http://dx.doi.org/10.1117/12.2047266
http://dx.doi.org/10.1063/1.90054
http://dx.doi.org/10.1016/0022-0248(83)90165-3
http://dx.doi.org/10.1109/ISQED.2010.5450394
http://dx.doi.org/10.1109/ISQED.2010.5450394
http://dx.doi.org/10.7873/DATE.2015.0932
http://dx.doi.org/10.7873/DATE.2015.0932
http://dx.doi.org/10.1016/j.mattod.2013.11.002
http://dx.doi.org/10.1117/12.2086090
http://dx.doi.org/10.1116/1.4929884
http://dx.doi.org/10.1116/1.4929884
http://dx.doi.org/10.1117/12.2219580
http://dx.doi.org/10.1117/12.2219580
http://dx.doi.org/10.1117/12.2219876
http://dx.doi.org/10.1117/12.912804
http://dx.doi.org/10.1109/ICCAD.2013.6691117
http://dx.doi.org/10.1117/12.2045756
http://dx.doi.org/10.7873/DATE.2013.076
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.7155/jgaa.00003
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/BF00940812
http://dx.doi.org/10.1117/12.2069188
http://dx.doi.org/10.1117/12.2069188
http://dx.doi.org/10.1016/B978-0-08-100250-6.00008-0
http://dx.doi.org/10.1016/B978-0-08-100250-6.00008-0
http://dx.doi.org/10.1145/1007912.1007931
http://dx.doi.org/10.1145/1007912.1007931
http://dx.doi.org/10.1145/1007912.1007931
http://dx.doi.org/10.1007/s00453-013-9802-3
http://arxiv.org/abs/1311.3144
http://arxiv.org/abs/1311.3144
http://arxiv.org/abs/1311.3144
http://arxiv.org/abs/1311.3144

